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An algorithm is developed to study particie dynamics of beams
including collective interaction with high aceuracy and low noise.
Particle dynamics with collective interactions is treated through
particle simulation, where the main or average distribution f and
the deviation away from it, 8f, are separately followed, The main
distribution £ is handled by an analytic equilibrium solution and
the perturbation away from i, &f, is followed by the method of
characteristics. We call this the §f algorithm. We specifically model
a synchrotron collider which includes the collision section where
collective effects of collisions are simulated by this §falgorithm and
- the rest of the collider where single particle dynamics are treated
by simple harmonic transport. The most important target of this
simulation is to understand and predict the long-time {10%-10° rota-
tions) behavior of the beam luminosity and lifetime, The §fmethod
allows us to study the effect of small perturbations over long time-
scales of beam {ifetime by eliminating the numerical noise problem
that is inherent in particle-in-cell techniques. In the 5fcode using the
reference parameters of the SSC (Superconducting Super Collider},
beam blow-up near resonances and oscillations in the tune shift,
Ay, far from resonances are observed. In studying long timescale
particle diffusion in the phase space of the beams away from reso-
nances, the §fcode performance is compared with a tracking code
which does not incorporate collective interaction. © 1995 Academic
Press, inc.

1. INTRODUCTION

In this paper we present an algorithm which allows the study
of collective particle dynamics in beams with realistic fluctua-
tion noise levels. The so-called 8f algorithm in which the flue-
tuating part of the distribution function is simulated has been
applied to various problems in recent years | 1-4]. The common
theme of all these studies is the reduction of the enhanced
particle fuctuation noisc characteristic of standard particle-in-
cell (PEC) techniques [5, 3]. The 8f algorithm allows the study
of subtle plasma instabilities vsing a much smaller number of
simulation particles than needed by the PIC technique. In this
paper we apply the &f algorithm to the beam-beam interaction
which is one of the principle limitations on beam intensity in
high energy synchrotron colliders [6, 7).

One of the goals of high energy particle accelerators is
achieving a large number of collision events from high energy
cotliding beams. In circular accelerators or synchrotrons this
is accomplished by colliding two focussed beams which are

travelling in opposite directions, The luminosity of the colliding
beams is defined as

N?.
dga?’

L=y (1)

where & is the number of particles, o is the rms beam size,
and fis the frequency of collisions. To achieve a large interac-
tion rale, it is necessary that the luminosity L be as high as
possible. High luminosity is achieved by high collision frequen-
cies, a large number of particles per beam, and small beam
sizes. However, higher N increases collective effects, higher f
results in muli-bunch instabitities, and lower o places more
demands on focusing systems and beam sources. Typically the
luminosity L is a nurnber between 10° and 10® cm™2 57! for
contemporary high energy accelerators. At high energies the
interaction cross section o, tends to be small on the order of
107 to 107 c¢m?, as it is inversely proportional to the square
of the beam energy. A large number of collisions is necessary
to achieve a statistically significant amount of data. For exam-
ple, in the Superconducting Super Collider (§8C) the projected
storage time in the main ring is 24 h. In this amount of time
the bunched beams will undergo approximately 10° rotations
and collisions. Therefore, the beams need to remain coherent
for a long period of time making long-term beam stability a
major concern with circular colliders, Therefore, even small
perturbations such as the beam—beam interaction can lead to
beam spreading reducing beam luminosity and beam lifetimes.
in the beam—beam interaction each beam imparts an impulse
via their collective electromagnetic fields on the other beam at
the interaction point, where the beams cross. For hadron col-
liders the beam~beam interaction is expected to be crucial,
since there is no synchrotron radiation damping to stop beam
blowup as in electron storage rings [6]. This impulse may be
treated as a kick, as the interaction time is much shorter than
the beam particle dislocation time due to collisions. The kick
can include both the impulse acting on whole beams and im-
pulses acting on individual particies within each beam. Beamn—
beam plasma collective effects include plasma instabilities or
“‘soft’” collisions. These instabilities modify the beam profile
and can contribute to increasing beamn size. Collective instabili-
ties have the most effect in the interaction region of the storage
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ring where the beam densities are highest in the acceleraior.
The relative importance of collective effects in plasmas is deter-
mined from the plasma parameter g,

g = lnA}), (2)
where n is the density and A, is the Debye length. If g <€ 1,
collective effects play an important role. For SSC type parame-
ters g = 2.66. So collective effects are not dominant for a
single pass beam—beam interaction. However, the effects of a
large number of successive interactions have yet to be deter-
mined.

Numerical simulation of accelerator beam dynamics has a
relatively short history. As accelerators became increasingly
more costly and complex, computers and computational tech-
nigues also became increasingly more developed. Computer
simulation has recently become an accepted standard method
of investigation of accelerators. It certainly is this way for the
Tevatron. For the SSC one may say even that it has become
one of the central design techniques. The simulations allow the
study of the problem under very controlled conditions with
accuracy limited by the precision of the computer. Analytical
methods provide a means to study the problem in the linear
regime. However, nonlinear aspects are not easily accessible.
Numerical methods allow the study of this regime with fewer
approximations titan analytical methods. Simulation schemes
such as the PIC methods [5, 3] represent a mediom ground
between the two-particle picture of the beam—beam interaction
and the full statistical picture representing all particles in the
beams. However, the enhanced particle fluctuation noise in PIC
methods presents a problem when studying a small perturbation
such as the beam—beam interaction over long timescales. By
employing the §f model at the interaction point, an assessment
of the relative importance of collisions as a whole and individual
““soft’’ collisions (collective effects) can be determined without
the problem of fluctuation noise.

In the following sections the numerical codes used to study
the beam—beam interaction will be described. In all the codes
a one dimensional model using the tracking or 8f technique is
employed at the interaction point so that oscillations in only
one transverse direction due to the counterstreaming beams are
studied. The rest of the machine is treated by simple harmonic
transport (betatron oscillations). We will examine the contribu-
tion of self consistent effects on beam blowup and particle
diffusion after a large number of interactions.

2. TRACKING CODE

In this section we describe the tracking code technique [8].
The tracking code results are used as a comparison with §f
simulation results; . .

The basic principle of tracking codes is to follow the dynam-
ics of single particles around the machine [8]. In the beam-
beam interaction the tracking code consists of two components:
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a target beam and a projectile beam. The target beam is treated
as a rigid smooth Gaussian distribution of a large number of
particles. It remains unchanged from interaction to interaction.
The projectile beam is considered to be a collection of mutually
noninteracting particles which are perturbed by the target beam.
This is the so called “‘weak—strong’’ approximation [8]. In
tracking code simulations in the *‘weak-strong’’ approxima-
tion, transport about one turn is simulated as the product of
two matrices, one for the one turn Courant-Synder map [9],
and the other for the impulsive application of the beam—beam
interaction discussed above [8]:

X X
-l
X |final X |initial

B sin(Zﬁvg)] [ 1 0]
4w Avy F(x)/IBF 1

3

[ cos(2m )

—sinavyBF  cos(Zmyy)

4

where x is the position of the particle, x' is dx/ds, 5 is the
distance along the collider, ¥, = § ds/B(s) is the tune, Ay, is
the input tune shift, BF is the betatron oscillation amplitude at
the interaction point (IP), and F{(x) is the 1D truncaticn of the
force from a round Gaussian beam

1 — exp(—x*20%)

lezﬂ'%{)

Fix)y=

, (5

where g, , 1s the beam standard deviation in x. This formulation
is similar to that of Neuffer er al. [8]; however, here both beams
are of the same charge. For comparison with one-dimensional
simulation results, F(x) becomes the force of a 1D Gaussian
slab,

ro= [5(2)e(A) ©
x{

where erf is the error function.

The first matrix in Eq. (4) takes into account the particle
motion from the lattice magnets {9]. The second matrix takes
into account the kick from the beam—beam interaction.

3. THE &f ALGORITHM

We describe a collider model using the §f method. In many
problems involving subtle plasma instabilities developments in
particle phase space are significant only for a small portion of
the total number of patticles and those for a large portion of
particles may be more readily described. We propose a numeri-
cal algorithm to pinpoint the small contributions within the
particle-code framework, by isolating the more interesting part
of the distribution. In this mode] the collider is broken into two
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Storage Ring

Interaction Region

FIG. 1. This shows the two components used to model the collider.

sections. One section models the interaction region. The other
section models the rest of the storage ring. In the interaction
region it is necessary to take into account the beam-beam
interaction. Since self-consistent effects play an important role
in the beam dynamics there, the §f method is used. The rest
of the collider is modelled using the Courant—Synder map
which simply involves a symplectic rotation of the particles in
phase space [9].

Our model differs from previous models of the beam—beam
interaction (10, 8, 11}, where the beam—beam interaction is
approximated as either a two particle interaction, a single parti-
cle—many particle interaction (*‘weak—strong’’ approximation)
{10, 8], or a many particle-many particle interaction (*‘strong—
strong’"), where the beam is constrained to be a Gaussian [11].
Using a &f code in the beam-beam model allows a many
particle-many particle interaction with internal degrees of free-
dom in the beam shapes.

The steps of the simulation for one tum in the collider are:

interaction region
2. reset of fields to 0
3. symplectic mapping.

These steps are repeated until the necessary number of turns
are attained. Figure [ shows the basic geometry used in the
simulation models.

Particle-in-cell (PIC) codes typically use macroparticles to
represent the entire distribution of particles. In the beam—beam
interaction for the SSC, the beams consist of 10" particles
each. Simulating this many particles with the PIC technique is
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computationally prohibitive. With the conventional PIC code
10'° particles are represented by only 10°~10* simulation parti-
cles allowing simulation of the beam-beam interaction in a
reasonable computation time. However, the fluctuation level of
various quaniities such as the beam density p in the code is
much higher than that of the real beam. The fluctuation level
JSp goes as approximately

% VN
PR (7)

where N is the number of particles. Therefore, the fluctuation
level of the PIC code is about 10° times higher than that of the
real beam. Although this probably is not significant for beam
blowup near resonances, the higher fluctuation level has a large
effect on more subtle phenomenon soch as particle diffusion.
The purpose of the &f algorithm is to facilitate the study of
subtle effects [1-4],

The &§f method foliows only the fluctuating part of the distri-
bution instead of the entire distribution. This is essentially
modelling the numerator on the right-hand side of Eq. (7). So
the 10°-10' computational particles are used to represent
V10" or 10° real fluctuation particles in SSC beams. This is
only one or two orders of magnitude beyond the number of
computer particles.

PIC strong—strong codes use a finite number of particles to
represent the Viasov equation or Klimontovich equation [12].
In the particular case of the beam—beam interaction,

Sy (K(s)x — Flx, 5))‘%:0» 8)
s ax dx

where K(s)x is the usual magnetic guiding force and F(x, s) is
the beam—beam force

2¢E (x)
ymu*

Fx,s)= 8,5}, 9

where E, (x) is calculated from the distnbution of the particles
and &,(s) is the periodic &function, §,(s) = 1 when s = nl,
where L is the accelerator circumference and n = 0, 1, .... The
distribution function f is represented by a finite number of
particles by

N
flx,x',5) = 21 we 8(x = x(s)(x" — xi(s)),  (10)

where N is the number of simulation particles used and wy, is
an initial unchanging weight assigned to each particle.

In the 8f method only the perturbative part of the distribution
is followed [1-4]. The total distribution function f(x, x', 5) is
decomposed into
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Slx, x5 = folx, X, 5) + 8f(x. X/, 9, (i)
where fy(x, x', &) is the steady or slowly varying part of the
distribution and 8f(x, x’, 5} is the perturbative part. The key to
this method is finding a distribution f(x, x’, 5) which is close
to the total distribution f{x, x', 5). The perturbative part &f(x,
x', s} is then small, causes only small changes to the distribution,
and thus represents only the fluctuation levels, If a distribution
Ju(x, £, 5) close to the total distribution is not found, then &f(x,
x', 5) represents more than the fluctuating part of the total
distribution, defeating the purpose of the method. The ideal
situation is having an analytic solution for fi(x, x', 5). In this
case any numerical truncation errors which result from the
necessary dertvatives of this function are eliminated. If an ana-
lytic solution cannot be found, then a numerical solution needs
10 be found which is close to the total distribution f(x, x', §)
and is slowly varying. A continual nuemerical update of fi(x,
x', s) would also defeat the purpose of the §f method, since
the PIC technique essentially does this also.

For beam-beam interaction an analytic solution to an equa-
tion close to the original Vlasov equation can be found. With
a linearized beam-beam force the Vlasov equation can be
written in the form

Wy oy s <o,

12
as ax ax’ (12)

where
Fy(s) = Fyd,(s). (13)

Fy is the linear portion of the beam-beam force F(x). The
solution is a Gaussian of the form

F 2
e )] (14)
where r? = x? + B%%'? N ig the total number of particles in
the beam, 8* is the betatron oscillation length, and o is in the
x direction. Note that if the beam-beam force were linear this
solution fy(r) would represent the distribution for all time in
the interaction region as well as in the rest of the storage ring.
Only the values of 8* and o differ between the two regions.
In the interaction region the 8* and ¢ are calculated using the
dynamic S model which assumes a linear beam-beam force
(13, 14],

cos(2mw) = cos(2my) + 2w Avsin(2rw),

(15)
B8* _ sin(2mvy)

B sin(2mv)’ (16)

where v, and 87 are the unperturbed quantities valid in the rest
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of the storage ring and v and B* are the guantities perturbed
by the linearized beam—beam force. From the perturbed 3* the
perturbed beam width & can be calculated from the formula

S¥
o

o
=5 a7

'CD,"CEJ
%

where ¢y is the unperturbed beam width which is obtained from
the assumption that the beam emittance is unchanged due to
this linear beam—beam force. An equation for the perturbed 8*
can be written in terms of unperturbed quantities from Egs.
(15) and (16),

@+ 2 %\ 32
(»—*) — 4 Ayycot(2rg) (——*)
BU BU (18)

- (27 Apg)? (ﬁ) —1=0,
B

where Ay, is the unperturbed one-dimensional tune shift. Equa-
tion (18} can be expressed in terms of the perturbed o using

Eq. (17):
4 3
(—E) — 4 Ay cot(Zriyg) (2)
axy 40

2
- (27 Apy)? (i{) - 1=0.
Ty

(19)

Both equations can be solved for the perturbed o or 8* using
a root finder. Once this is obtained the other perturbed quanti-
ties, » and Aw, are obtained from Eqgs. {(15) and (16).

Subtracting the linearized equation in Eq. (12) from the total
Vlasov equation in Eq. (8), we obtain the perturbative part of
Eq. (8) for &f:

28/ _

'

gif+x' aaf

— — (K(s}x — Fy(x, 5)) —(F(x, 5)
as dx

(20)
— Fisix) %

Fylx, 5) is the kick from a Gaussian beam and F(x, s} is the
kick from a Gaussian beam Fy(x, s) plus the perturbation 6F(x,
). As aresult of using the dynamic beta model for the stationary
solution f;, only the nonlinear part of the beam—beam force on
the right-hand side of Eq. (20) is used to advance &f. The reason
for choosing the particular form of the steady state solution is
apparent. The right-hand side of Eq. (20} is small. The terms
dfy/dx” and Fy(x, s} are calculated using the perturbed dynamic
beta quantities 8* and ¢. Note that the unperturbed Gaussian
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field Fy(x, 5) is used on the left-hand side of Eq. (20) which
makes the equation linear in 8f. The neglected term is

adf

SF(x, s)g. 2D

which is small in our problem. A possible incorporation of this
term in the algorithm is described in Section 5.
3.1. Finite Particle Representation

The perturbative part of the distribution §f (Eq. (20)) can be

represented by N particles (Characteristics):

N
8f(x, X', 5) = > wils, x(8), () 8(x — x5S’ — x/(s)).

i=1

(22)

This representation is similar to the PIC representation of the

entire distribution function in Eq. (10). However, the weights

w; are evolving. Note that in the worst case where the §f method
simply reverts to the PIC method. Substituting Eq. (22} into
the equation for §f advance, we obtain

dw, 1

—_—= [(F(x, 5y — Fols)x) a—fq] .
n ax |

ds @3

where

~(wrr)
"= AxAx'/’

This density # is calculated on the assumption that the parti-
cles are distributed uniformly in phase space. The density n
is constant through the entire run, since the particles follow
Hamiltonian trajectories [2]. This is no longer valid when radia-
tion or dissipative forces are included.

To ensure the conservation of total charge in the system the
weights are adjusted after each w; advance so that

(24)

(25)

M=
E
I
<

In the &f algorithm x;, x;, and w; are advanced. The advance
of the extra term w; increases the number of operations over
the PIC method and leads to other numerical constraints which
will be described in the next section.

The particles are distributed uniformly in x and p, phase
space in a cylindrical coordinate system r and @ upon initializa-
tion. The coordinates » and 8 are defined in terms of x and p, as

KOGA AND TAHMA

2 2
S ERC A
B P
tan(§) = =2 Qmn
s

where B§ is the betatron oscillation length at the interaction
point and p is the particle momenturn along the collider in s.
The maximum r value is input into the code and is broken up
into segments of length Ar. The number of particles at each r
value is determined by a cumulative integration method [3].
The particular functional form is

N
AN = §i 2=, (28)

where AN is the number of particles to be added, N is the
number of particles, and N, is the number of Ar segments to the
edge of the distribution. Once the number of particles between r
and r + Ar is known they are distributed vniformly in 6 with
a random offset 6, at » + Ar/2. The initial distdbution for
1000 particles is shown in Fig. 2. The purpose of this method
18 have each particle cover an equal area of phase space.

3.2, Symplectic Integration

Results from previous runs indicate that a higher order inte-
gration scheme for the characteristic advance is necessary for
the &f algorithm. In runs where just the leapfrog scheme is
used, the algonithm is inaccurate in the particle push. This
higher order integration scheme for the particles is needed in
the §f algorithm because small changes to the initial distribution
are being studied. In the PIC codes the numerical noise caused
by the finite number of particles is larger than that produced by
the numerical diffusion of the particles caused by the ieapfrog
integration scheme. We describe a symplectic finite difference
scheme to counter the effects of numerical diffusion on the
particle motion. The normal symplectic mapping is used to
advance the particles with an additional perturbation term.

Without the beam—beam force term the symplectic transfor-
mation map for the characieristics with the magnetic field 1s
just the Courant-Synder map [9]. Also in the case of a linearized
beam-beam force the symplectic transformation map can be
written with slight modifications. The map can be written in

x, f

where x = dx/ds, s is the coordinate along the collider, ¢ =
f:) ds/BF, and the indices i and f refer to the initial and final

cos(6) B sin( &)

X
_L sin(f)  cos(6) x'),-’ (29
B



THE &f ALGORITHM FOR BEAM DYNAMICS

TABLE 1
Steps for Advance of 8f Algorithm

} Start with x", x'7, 8, &

2 Bf tedx from x”, x™, &Y, Fr(x", &)

3 Sfpide = WS gk + OF")

4 xrﬂh‘i xln+If2

5 Bfi from x= R x N SR Freinpng g 2 By

6 PR

7 repeat steps 1—6 until the end of the interaction region
8 otate x™1, x !

9 repeat steps 1—-8 until the end of the simuiation run

positions, respectively. This map is used at all places in the
storage ring including the interaction region. Upon adding the
symplectic map the particle motion is accurate to many deci-
mal places.

A simple implementation of the beam beam force which
preserves symplecticity involves approximating the force with
an impulse. Using Hill’s equation,

X+ Ks)x = (x)
ym

3 O(9), (30)

where the term on the right-hand side of the equation is due
io the beam—beam force. The mapping is the same as a tracking
code with the beam—beam force,

) \Gw 1\« Gl
where
_ R 1
G(x) = Py (32)

and Fy(x) is the unperturbed force due to a Gaussian beam.

In the particle advance scheme the particles are advanced
first using the transfer matrix for a distance in 8 = As/48F,
where As = cAr. The particles are then kicked by the beam—
beam field for As/28% and then advanced again As/48F. The
total matrix is

(sl GoaC), o
), SO G )MOL),  OD
cos(#) B¥ sin( &)

M(8) = __Lsin(g) cos(6) )’ 68

B
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witere § = As/(48F) and x used in G(x) is the intermediate x
value obtained from the first transfer matrix application.

Fo(x) 1 As
ymiix 2

Glx) = (35)

3.3, Time Advance

The time advancement, the predictor-corrector advance
scheme, is shown in Table I. The n in Table I refers to the
time step number. In step 2 df i is calculated from the discreti-
zation of Eq. (23),

predict

witl =t — l[ (F(xf, 8f7)
(36)

2As,

xpy 2 7 ﬁ)(xg-x‘ )]

where As = ¢ At and F*(x7, ) is the force calculated from
the unperturbed Gaussian bearn Fyi(x?) plus the perturbation
force 8F"(x], 8f"). 8f phi is then calculated using Eq. (22):

I\
Bf (x, X', 8y = Z] wi* 80 — xi(s) 8(x" — xi(s)).  (37)

The same procedure is used in step 3 to calculate 8ffl.:

witl =w!+ Aw, (38
Aw = _l [(FnH;‘?(er/z‘ 6fn+la)
n
BE(xITIR x e
= Fy(s)x 7y plar %77 ax’x )] As.  (39)

In steps 4 and 6 x and x" are advanced using Eq. (33). In step
8 x and x" are advanced using Eq. (29),

cos(2nv) B sin2mv)
x \ntl x \atl
(x').- = ‘L*sin(Zm)) cos(27v) o5 (40)
0
where
y=p T ‘Aﬁ {4]1)
B

which takes into account the finite length of the interaction
region As in the phase space rotation.
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3.4. Force Calculation

One spatial dimension x and three velocity coordinates (v,,
vy, u,) are followed. In the force calculation two approximations
are made: (1) light waves are ignored and (2) self fields (space
charge effects) among particles of the same beam are negligible.
Ignoring the effects of light waves can be justified for the
SSC by considering the collisionless skin depth, A,. of the
beam, where

A.=clw, 42)
Wy = V 4ﬂezn;,/'ym,,. (43)

Using parameters for the SS5C, A, & w, where w is the width
of the beam; A, is the scale length over which a plasma responds
to light waves, Since A, is much larger than the size of the
beam, particles do not strongly interact with light waves. Self-
fields of the beam are neglected, since the forces from the other
beam are much larger. The ratio of the self-fields to the kick
fields from the other beam goes as

(self fields) == # (kick fields), (44)

where v = 2.13 X 10" for SSC parameters.

With the elimination of light waves the time step of the
simulations can be on the order of the plasma frequency w,,
which occurs on a much longer timescale than light waves.
The time of interaction between the two beams is 1, = As/
2c¢: T is the time simuiation is run before the particles are
rotated in phase space. With simulation time steps in units of
fractions of e, the time pericd can now be represented by 1-
4 simulation ime steps.

Each particle in the simulation has a particle shape factor
S{x). S$(x) is chosen to give the particles finite size, so that
short wavelength oscillations are filtered out in the fields [5,
31. This reduces noise and short range collision forces. The

particular form chosen is
P\ 242/

where @ s the finite particle size.
The macroparticles are advanced by the Lorentz force
equation:

Sz =

i
45
Vira “3)

idll =e f dx §(x — x MEX) + v, X B(x)/c),  (46)

where X; is the position, p; is the momentum, v;» 1 the velocity
of particle §, S(x) is the particle shape factor, and E(x;) and
B(x;) are the eleciric and magnetic fields of the other beam,
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respectively. The integral over x takes into account the finite
size of the particle.

The calculation of the fields can be simplified by performing
the appropriate Lorentz transforms and taking into account the
highly relativistic nature of the beams being studied. For a
general Lorentz transformation to a frame moving at velocity
v the transformation of the ficlds can be written [15]

E=vyE +BXB

I3 (47)

B=yB — BXE’)*HB(B BY), (48)

where B = v/c and 7 is the relativistic factor. Equations (47)
and (48) can represent transformations of the fields from the
frame moving with the beam (E’, B’) to the lab frame (E,
B). In the beam frame the beam particles only have thermal
velocities. These velocities are small and randomly oriented.
Therefore, only small remnant currents are present and the
approximation |B'| =~ 0 can be made. Equations (47) and
{(48) become

.y .
E=vyE *7——+IB(B'E), (49)

B=—y(pXE). (50)

Assuming the motion of the beams is in the z direction the
fields can be written

E,=vE,
B, = yBE..

(31
(52)

Since the beams are highly relativistic y 3 1, the approximation
|B| = 1 can be made. Thus, E, =~ B,. Using this in Eq. (46),
we obtain

dp,

T ef dx S(x — x)E,(0)(1 + v,lc), (53)

where v; 1s the velocity of the beam kicked by the other beam.
Again the approximation.v; = ¢ can be used:

ap;

dzzgj dx S(x — x)E.(x). (54)

Therefore, including the effects of the magnetic field kick to
the beam simply involves doubling the contribution of the
electrostatic field of the other beam.

The &8f method the steady state Gausian part of the beam
distribution produces an electric field E, of the form
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E (x)=4men, a;oerf( (55)

)
‘\/E(J'xg '

where n, is the beam density, o, is the unperturbed beam
sigma, and erf is the error function. The perturbative part of
the electric field E, is calculated from

X

ax

=4me | S(x — x)p(xNdx', (56)

where p(x) is the perturbative charge density and S(x) is the
particle shape factor. The charge density p(x) is the accumula-
tion of the finite size macroparticles,

p(x) = 2, ;8(x - x)), (57)
=1

where N is the number of particles and g; is the charge of
particle j which is w;e, where w; is the weight of the particle
calculated from the 8f method. Since the charge is accumulated
on a grid, fast Fourier transforms (FFT) can be used to transform
the grid to k space where manipulation is easier,

N
plxy = D, ge e, (58)
j=1
p(k) = ge -’ 2 e ik, 2 ek, (59)
B 1=
where a Gaussian shape factor is used S(x — x;) =

expi —(x — x;)*/2a%, the sum on g is over the grid points, a
is the particle size, and §; is the distance of the particle from
the nearest grid point x; — x,, The summation term with j €
£ is a sum over all particles f in grid cell g.

In order to increase the accuracy, the accumulation using
cubic spline interpolation [16, 3] is implemented. This assign-
ment technique allows a smoother grid assignment than lower
order methods such as the subtracted dipole scheme (SUDS)
or area weighting scheme |5, 3]. The charge density then takes
the form [3}

pik) = ge -#a2 [2 e % (E s+ 2 sz)
4

= JEgt

(60)

=g jEg—

where the summation terms with j € g — 1 are sums over all
particles j in grid cell g — 1 and the s terms are the
weighting factors:

5= (1= 81 +28) (61)

5= 813~ 28) (62)
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5= 81— R A (63)
si=—(1-8)8A. (64)

The electric field in Eq. (56) can be transformed to k space
using the FFT,

E,= §4rrep<k), (65)

where p(k) is from Eq. (60). The force on the particles F(x)
can be calculated from the inverse transform of Eq. {65) [3].

The previous field calculation solves the field for periodic
boundary conditions. Note that the field equation does not take
into account the finite charge in the system. The finite charge
is tncluded in the & = ¢ term. However, this term cannot be
incorporated, since one gets a division by zero. To account for
finite charge in the system, the k = ( term in E, can be explicitly
calculated [17],

EX(x) = —dup(0) (5 -~ x) (66)
x 2 £l

where L, is the length of the system and p{0) is the & = 0
component of the charge density which calculates the total
charge in the system. By adding this field to the field calculated
from Eq. (65) after the inverse transform one gets the field with
vacuum boundary conditions.

4. SIMULATION RESULTS

In this section we describe results of the study of test prob-
lems in the beam—beam interaction. Short timescale beam-—
beam collective effects near resonances, as well as long time-
scale collective effects far from resonances, are examined using
the &f code, which are compared against the single particle
tracking code results.

4.1. Reference Parameters

Our research is generic enough to cover the beam-beam
interaction of various colliders or storage rings. We make spe-
cific reference to the parameters of the SSC. Table II shows
parameters for the SSC. Using the numbers from the table we
have: = 213 X 10* and wyry = 0.035, where w, =
Vamein,lymy,, n, = Ngf(lwh) is the beam density, m, is the
mass of the beam particles (protons), v is the relativistic factor,
and 7= L/2c is the interaction time of the colliding beams. The
horizontal tune shift Awy, is calculated for a two-dimensional
Gaussian beam. Since the present simulations deal with only
one dimension, this quantity is recalculated. Using the equation
for the one-dimensional tune shift,
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TABLE 1II
SSC Parameters

IXwXh = 75x107x% 107 cm
Nz = 7.5 x 10°
T = 20 Tev protons
B8* = 50 cm
Avge = 0.84 x 107
Vio = 0.285
Luminosity = 10% ¢m™2 5™
Lifetime = 24 h or 10® turns

(67)

and using values from Table II, the one-dimensional tune shift
is Aip = 2.1 X 107 A series of simufation runs is performed
using the parameters described in Table II.

4.2, Near Resonances

A good test of the §f code is the examination of beam blowup
near strong resonances. Although the 8f code is not good for
deviations far from the equilibrium which is a characteristic of
beam blowup, the onset of resonances should be observed by
the code. We examine two resonances with values of the tune
just above 1, = 3 and v, = 1.

The initial distribution of particles is shown in Fig. 2 with
10° particles in each beam. The simulation box size is 256 A,
where A is the cell size. The beam width w is 30 A and the
particle size a is A. By normalizing the code to a plasma with
density lower than the beam, where w, is the normalization

FIG. 2. Uniform distrbution of 1000 particles in x, p, phase space.
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FIG.3. Distribution of i simulation particles in (x/ oy, p./c,) space after
50 rotations with v = 0.5021 and Avy, = 2.1 X 1073,

plasma frequency and w, is the beam plasma frequency, only
four simulation time steps are needed to cover the interaction
region. Thus, wy At = 0.25, where A7 is the simulation time
step size.

Figure 3 shows the distribution of 10° particles in (x/o,,
p./o,) phase space for one beam after 50 rotations with the
tune just above ¥ = ¥ at ¥ = 0.5021 and tune shift Ay, =
2.1 X 1077, After 50 rotations the particles are no longer uni-
formly distributed in (x/o,, p./o,) space. The distribution of
particles has the football shape characteristic of resonances near
v, = 4. Particles near the taiis of the distribution have gained
a large amount of momentum. A profile in x of a Gaussian
distribution of particles in Fig. 4 is shown. Figure 5 shows the
deviations from the Gaussian profile after 50 rotations. The
center of the beam is at x = 128 A. The maximum. pertur-
bations are about *30, away from the core of the beam with
| 8f/f,] = 30% there. Note that the perturbed distribution makes
sense physically. There is a depletion of particles from the
center of the beam and an increase in particles at about £3g,.
A quantity often calculated in accelerator physics is the normal-
ized emittance g, (8],

4] 50 100 150 200 250
x /A
FIG. 4. Gaussian steady state disttibution.
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FIG. 5. Distribution of 10* 8f simulation particles including the particle
weights in x after 50 rotations with 1, = 0.5021 and Apy = 2.1 X 1075,

= l__]_{v‘ 2 k2
€, = (Bv)ﬁzﬁék 2 (xF+ BFx/%), (68)

where 8 and y are the usuval relativistic quantities, 8i° is the
betatron oscillation length at the interaction point, x' = p,/p,
D, is the transverse momentum, p is the momentum along the
collider path, and N is the number of simulation particles. The
emittance gives a measure of phase space area occupied by
the beam particles. In the §f algorithm an initial unperturbed
emiltance is calculated

- 11 2y
&n = (BY)T3 p E (x}+ BFxDwos (69)

where wy; is the initial unperturbed distribution function f; for
particle i{. The perturbation:

N
56, = (wy)w%;l*- >l Bam,  (0)

where w; is the time evolving perturbation &f for particle i.
This perturbation emittance is calculated and added to the initial
g, to get the total £,,. Figure 6 shows the growth of the emittance
for both beams as a function of rotations. It can be seen that
the beams are blowing up in phase space area very quickly.
Figure 7 shows the distribution of 10 particles in (x/a,, p./
o,) phase space for one beam with the tune just above » = §
at ¥ = 0.2521 and tune shift Ay, = 2.1 X 107? after 400
rotations, The distribution of particles in phase space shows
the characteristic square-like shape indicative of a beam near
resonance of ¥, = ;. A profile in x of a Gaussian distribution
of particles in Fig. 8 shows the deviations from the Gaussian
profile (Fig. 4) after 400 rotations. The center of the beam is

323

12.9 T T T B
12,

tn
T
I

12.

i
|

11.

11.

10.

n oo ® N
I
1

10.

10,1

ap 40 50

12.9 T T T T
12,

o
I
i

12.1 — 1

11,

~
|
1

11.
10.

n o oW
i

10.

I ! i

o 10 20 30
M

10.%

FIG. 6. The emittance £ of both beams for 50 rotations. One beam is at
the top and the other beam is at the bottom of the figure.

at x = 128 A. The maximum perturbations are at the core of
the beam with | 8f/f,| = 10% there. The effect of the resonance
is a widening of the beam in x. There is a depletion of particles
from the center of the beam and an increase in particles at
about Ax ~ *g,. Figure 9 shows the growth of the emittance
for both beams as a function of rotations. The beams blow up
in phase space area very quickly and then saturate at about 140
rotations. The rate at which the emittance for v, = 0.2521 is
growing is much slower than the emittance for », = 0.5021.

S T T T T T T T T

F1G.7. Distibution of 10° simulation particles in (x/e,, p,/o, ) space after
400 rotations with vy = 0.2521 and Ay, = 2.1 X 1072,



324

1.8 TTTT T T

0.2
of(x)

-0.8

-2.2
85 100 115 130 145 160

X /A

FIG. 8. Distribution of 10 8f simulation particles including the particle
weights in x after 400 rotations with ¥, = 0.252] and Ay, = 2.1 X 1072

This is expected, since the resonance near v, = (1.5 is stronger
than that for », = 0.25.

To examine the effect of coupling between the beams a
simulation was run in which the term on the right-hand side
of Eq. (20) was modified to

—(Fy(x, 53 — Fyp{5)x) (71)

oh
ax”’
where the perturbation 8F(x, s) to the Gaussian beam kick

Fio(x, s) 1s ignored. This in effect decouples the beams leaving
only evolution from a fixed beam distribution which is the same

10.5 i —I— | —l_ p— T
— o
104 - -------fracking | ]
10.3
€
w2 - /S N
10.1
10 | ! ! ! I ! !
& 50 100 150 200 250 300 350 400
M
10.5 T T T I SE— ) E——
B — 8
€
1o 1 | | | | ! |
© 50 100 150 200 250 300 350 400
M

FIG. 9. The emittance £ of both beams for 400 rotations. One beam is at
the top and the other beam is at the bottom of the figure.
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FIG. 10. The minimum and maximum perturbation values 8f/f, for M =
10,240 rotations, rg = 0.285, and Ap; = 2,173

as a tracking code. The dotted lines in Fig. 9 show that when
the beams are decoupled the saturation level of the emittance
is slightly higher than in the self-consistent case. Physically,
this makes sense. When coupling of the beams is included, the
kick from the other beam is reduced due to its expansion.
Without coupling the kick is constant. Simulation runs with
vy = 0.5021 showed little difference between the coupled and
uncoupled cases in the evolution of the emittance due to the
short timescales over which the simulations were run.

4.3. Long Time Behavior

A series of §f simulations have been perfarmed to determine
long-time characteristics of the beam—beam interaction far from
resonances. The fluctuation level § expected for the actual SSC
beam is & = 107 for 10" particles. Figure 10 shows the variation
with particle number of the minimum and maximum perturba-
tions 8f/f, for runs with 10,240 rotations. We see that the
maximum perturbation is nearly independent of particle num-
ber. The minimum fluctuation value decreases exponentially
with increasing particle number. It can be seen that the mini-
mum perturbation drops below 1073 for simulations with 10°
particles and larger. Because 1(° particles could be used, rota-
tions of 10° could be run. The initial distribution of particles
is shown in Fig. 2. The parameters are the same as in the
previous section with the exception that the tune ¥y = 0.285
and the simulation box size is 128 A.

Figure 11 shows the distribution of 10° particles in (x/ay,
p./a,) phase space for one beam after 10° rotations. After 10°
rotations the particles are no longer uniformly distributed in
(x/a,, pJa,) space. Some clumping of particles has occurred
and small regions contain no particles. Figure 12 shows the
perturbations from the 8f code to the Gaussian profile after 10°
rotations. The maximum perturbations are only 0.1% of the
maximum in the Gaussian profile (Fig. 4). Thus, the 8f code
is still a vahid approximation.

4.3.1. Tune Shift. The tune shift Av measures the strength
of the beam—beam kick. As the beams expand and contract,
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FIG. 11. Distribution of 10 simulation particles in (x/a;, p./o,)} space
after 10" rotations with #, = 0.285 and Ay, = 2.1 X 107,

the kick weakens and strengthens, respectively. One method
for measuring Av involves a least-squares-fit to the kicks of
sinall and large amplitude particles. We use Sands’ [18] expres-
sion for linear tupe shift, which is valid for smal! amplitude par-
ticles,

av =P Ak A 12)
YT ar ’
AKAs = 9;—, (713)

where Ax’ = Ap,/p and Ap, = 2eE (x) Ar.

Results from the least-squares-fit method for one beam are
shown in Figs. 13a and b. The fit is done for small amplitude
particles x < O.lo, (Fig. 13a) and for the entire beam (Fig.
13b). The tune shift A»oscillates around the unperturbed values
of Ayy = 2.1 X 1073 for small amplitude particles and Ay, =
1.52 X 107* for all the particles. The discrepancy is due to the

AR REN
0.03

0.015
8(x) 0

-0.615

20 30 40 50 &0 70 80 90 100
X /A

FIG. 12. Distribution of 1{? 8f simulation particles including the particle
weights in x after 10° rotations with p, = 0.285 and Ay, = 2.1 X 107,
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FIG. 13. Tune shift Av measured from a least squares fit to (a) small
amplitude particles x << .16, (b) all particles, and (¢) Aw calculated at one
point x in the beam using the electric field £,(x) for M = 10? rotations.

dropoff of Ay at large values of x. The amplitude of the vartation
in Ay for small amplitude particles is approximately +3%
of Aw, throughout the run. The maximum variation of Av is
approximately =4%. The oscillations in Ay indicate expansion
and contraction of the beams plus variations due to the shift
in particle positions. Note that the small amplitude Av of the
beam has constant oscillation amplitude, whereas A for the
entire beam is increasing in oscillation amplitude for the first
15,000 rotations.

Oscillations in Av due purely to the expansion and contrac-
tion of the beams can be observed when Aw is calculated at
one point x in the beam using the electric field E,(x),

Bt

=—AKA
Av pp K As, (74)
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FIG. 14. D, from the tracking code with Ay, = 2.1 X 107 and » = 0.285
for M = 10,240 rotations; dfi and df2 have time scales of AN, = 102 and
AN, = 1024 rorations, respectively.

_2eE(x)1
ymu? x'

AX

(75)

where E (x) = E,o(x) + 8E,(x), E(x) is the unperturbed field
and SE, (x) is the perturbation field. Figure 13¢ shows the
variation in Aw at x = (.le,, indicating the effects of self-
consistent density variations in the target beam.

4.4, Particle Diffusion

In this section we examine particle diffusion brought about
by the beam-beam interaction. We compare the diffusion coef-
ficients measured from the tracking code and the &) code.
Diffusion is determined using the method of Chirikov [6]. Diffu-
sion coefficients, D, and D, for sample particles initially dis-
tributed randomly in phase space are calculated over two differ-
ent timescales [6, 7]. If D, = D,, then the motion x is diffusive.
If D, & D,, where D, is calculated on shorter timescales than
D,, then the motion is not diffusive.

4.4.1. Tracking Code Results. We first examine particle
diffusion for particles tracked using the one-dimensional
tracking code described in Section 2. Reference parameters
described in Section 4.1, for the SSC are used: the tune v, =
0.285 and the tune shift Ay, = 2.1 X 107%, Diffusion coeffi-
cients, df1 and df2, calculated after 10,240 rotations are shown
in Fig. 14, where r/o is the distance in phase space from the
center of the beam

=Vi(x/a) + (pla, )l (76)

r
o
The [, means that dfl and df2 are calculated for diffusion in

position |x|. The diffusion is normalized to %/N,, where N,
is the number of rotations. In Fig. 14 it is apparent that dfl >
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df2 for all particles indicating that the motion is largely oscilla-
tory in phase space. The coefficients calculated over two time
scales differ on average by about a factor of 100. This is
expected for oscillatory motion,

di2 (ANY
df1 AN,

1
or ——
1000°

(77

where AN, = 102 and AN, = 1024, Figure 15 shows. the
diffusion coefficients calculaied for 40,960 rotations. The range
of coefficients for 403,960 rotations is between 107° and 1074,
There are some points between r/o = 1.5 and r/o = 2 which
meet the criteria for diffusivity. That is, df] =~ df2. However,
most of the coefficients differ by about a factor of 100,

The average diffusion rate {s decreasing with increasing rota-
tions. The range of coefficients for 1(° rotations is between
107" and 107", This drop with increasing rotation number is
another indication that the particle moticn is still oscillatory
and not diffusive. If the particles are diffusive the diffusion
coefficients would settle down to values independent of the
time scale. So in tracking c¢ode simulations a majority of the
particles exhibit oscillatory motion up to 10° rotations at differ-
ent initial phase space positions.

4.42, 8f Simulation Results. In this section we describe
particle diffusion resulis obtained from the 8f simulation code
described in Section 3. SSC reference parameters from Section
4.1 are used with ¥, = 0.285 and Ay, = 2.1 X 107, Each
beam in the simulation has 10° simulation particles with the
initial distribution in (x, p,) phase space shown in Fig. 2.

The diffusion coefficients are calculated for 100 initially
uniformly distributed sample particles after 10,240 rotations.

o dft
s di2
107 10°°
E 3
a0 | éﬁ -10
1070 | M 10
o = P 50 ”?
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x ;3 R ..!':.e .3’.“3
102 [ e U oe .g pi IPPST
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E [ ] » . 1
L . L]
Fe © L4 . 3
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FIG. 15. D, from the tracking code with Ay, = 2.1 X 107*and v = 0.285
for M = 40,960 rotations; dfl and df2 have time scales of AN; = 409 and
AN, = 4096 rotations, respectively.
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FIG. 18. D, from the 8f code with 1000 simulation particles and the
tracking code for M = 10,240 rotations; dfl and df2 have time scales of
AN, = 102 and AN, = 1024 rotations, respectively.

As in previous sections the diffusion coefficients, df1 and df2,
are calculated using |x|. The diffusion D, is again normalized
to o/N,. Results from the #f code and tracking code after
10,240 rotations are shown in Fig. 16, The diffusion coefficients
for the &f and tracking code nearly overlay each other. Both
codes show oscillatory motion for 10,240 rotations. These re-
sults can be compared with results where a PIC code is used
in the interaction region [19]. As stated in earlier sections the
PIC code is the case of the 8f algorithm where constant weights
are used 1o represent the entire evolving distribution function.
Figure 17 shows the diffusion coefficients obtained from the
PIC code with 10* simulation particles initialized with equal
weights and the tracking code [19]. The noise level of the 8f
code is less than a strong—strong PIC code which shows diffu-
sive characteristics in the tails of the distribution.

The sample particles begin to show diffusive behavior, when
the number of rotations is increased. Figure 18 shows the diffu-

o df L] 1
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FIG. 17. D, from tracking code and the strong-strong PIC code with 10
simulation particles for M = 10,240 rotations; df! and df2 have time scales
of AN, = 102 and AN, 1024 rotations, respectively.
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FIG. 18. D, from the &f code with 1000 simulation particles for M =
40,960 rotations; df1 and df2 have time scales of AN, = 409 and AN, = 4096
rotations, respectively.

sion coefficients, dft and df2, calculated for 40,960 rotations.
Particles with r/o > 2 are diffusive (df1 = df2). The particles
with r/a << 2 are still somewhat oscillatory in nature. It appears
that the particles in the tail of the distribution are most sensitive
to either noise or collective motion in the beams.

A comparison of the §f and tracking code at 40,960 rotations
is shown in Fig. 19. The tracking and &f code diffusion coeffi-
cients are nearly equal to the short time-scale coefficient dft
with values of r/o << 1.5. For the long time-scale coefficient
df2 and r/o > 1.5 the 8f code shows more diffusive behavior.
This indicates that the phenomenon which causes the diffusive
motions at for large r/o is most evident on time scales of 409
rotations. Diffusive motion is not evident for particles with
rig << 1.5, This indicates that the diffusion occurs on longer
time scales there. It appears that the diffusion is largest for
large r/o and smallest for small »/o. This enhanced diffusion
in the tails was also observed in the strong—strong PIC code
with fewer rotations (Fig. 17) [19]. When the 8f code is run
for 10° rotations, all the sample particles show diffusive behav-

. x df1
wracking code 8 code
°o df2 + di2
108 - 10°®
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P Ll
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4
1072 | 102
107 10"
0 0.5 1 1.5 2 2.5 3
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FIG.19. D, from tracking code and the 8f code for M = 40,960 rotations;
df1 and df2 have time scales of AN, = 409 and AN, = 4096 rotations, respec-
tively.
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FIG. 20, D, from the &f code for M = 10° rotations with 10° and 10*
particles; dfl and df2 have timescales of AN, = 1000 and AN, = 10,000
rotations, respectively.

ior (Fig. 20). The diffusion coefficients calculated for a simula-
tion run with 10* particles are also shown in Fig. 20. The
coefficients nearly overlap for 10° and 10* particles indicating
that the diffusion observed is not due simply to particle fluctua-
tion noise. It is shown in another paper that the oscillations in
each beam induced by the other beam is responsible for the
profile in the diffusion [20].

5. CONCLUSIONS

We have developed a new fully self-consistent 8f algorithm
and one-dimensional code to study the beam—bearn interaction
in circular colliders. It has been shown that by finding an
analytic solution for the particle distribution fi(x, x', 5) near
the evolving particle distribution f{x, x’, 5} the simulation of
particle beams with more realistic fluctuation levels is possible.
Theé only added conmputation is the calculation of the evolution
of weighting functions w; for each particle, In tests of the code
over short time scales the simulations show the expected beam
blowup near resonances with the rate of blowup decreasing
with the order of the resonance. Test simulations over long
time scales far from resonances show that after 10° rotations
the two main approximations of the &f code are still valid. The
deviation from the initial Gaussian distribution is still small.
After 10° rotations in the 8f code the simulation particles are
no longer uniformly distributed in (x/a,, p,/o,} space. In the
simnulations using the reference SSC parameters the amplitude
of the variation in A for small amplitude particles is approxi-
mately *3% of input unperturbed tune shift Av, throughout
the run.

In studying particle diffusion away from resonances it is
found that the single particle tracking code shows no diffusion
of particles from the beam—beam interaction after 10° rotations.
-The 8f code and tracking code give exactly the same diffusion
coefficients up to 10,240 rotations, A PIC code with 10* particles

" KOGA AND TAJIMA

and 10,240 rotations already shows diffusion in the tails of the
distribution. The 8f code begins to show diffusion in the tails
after 40,960 rotations. The coefficients near the core of the
beam agree with the tracking code. All particles are diffusive
after 10° rotations.

Future improvements to the code will include the extension
to three dimensions and a more realistic storage ring model [21].
Also, as shown in earlier sections, the perturbation equation for
the 8f advance was linear in 8f (Eq. (20}). The term which is
neglected is Eq. (21),

S5F(x.5) %%’, (78)

which was assumed to be small. This term, however, can be
incorporated in the 8f advance by placing it in the stationary

afﬁ‘ ' _a_-f_o _ _ afﬂ —
xS (K) ~ Fx 55 =0, (79)
as
Moy ¥ ksy - Fysyn e = <5F(x, 5 a—‘Sf> (80)
as ax dx ax

where { ) refers to time average. The incorporation of this
term in the stationary Eq. (12) forces the numerical advance
now of fylx, x’", 5). However, fi{x, x’, 5} is slowly varying as
long as it is away from resonances, so that the equation would
need to be advanced only every few thousand rotations. The
term in Eq. {78} is the quasi-linear term [22], with which the
background distribution function is changing on a much larger
timescale in Eq. (80). In this way we can keep track of the
overall change in f; so that the order of &f/f; is kept small,
even for very long time-scale simulations.

Other improvements which can be made include a higher
order method of integration of the particle positions using the
method of symplectic integration algorithms [23] or Lie alge-
braic techniques [24].
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